Very high-cycle fatigue failure in micron-scale polycrystalline silicon films: Effects of environment and surface oxide thickness

نویسندگان

  • D. H. Alsem
  • R. Timmerman
  • B. L. Boyce
  • E. A. Stach
  • R. O. Ritchie
چکیده

Fatigue failure in micron-scale polycrystalline silicon structural films, a phenomenon that is not observed in bulk silicon, can severely impact the durability and reliability of microelectromechanical system devices. Despite several studies on the very high-cycle fatigue behavior of these films !up to 1012 cycles", there is still an on-going debate on the precise mechanisms involved. We show here that for devices fabricated in the multiuser microelectromechanical system process !MUMPs" foundry and Sandia Ultra-planar, Multi-level MEMS Technology !SUMMiT VTM" process and tested under equi-tension/compression loading at #40 kHz in different environments, stress-lifetime data exhibit similar trends in fatigue behavior in ambient room air, shorter lifetimes in higher relative humidity environments, and no fatigue failure at all in high vacuum. The transmission electron microscopy of the surface oxides in the test samples shows a fourto sixfold thickening of the surface oxide at stress concentrations after fatigue failure, but no thickening after overload fracture in air or after fatigue cycling in vacuo. We find that such oxide thickening and premature fatigue failure !in air" occur in devices with initial oxide thicknesses of #4 nm !SUMMiT VTM" as well as in devices with much thicker initial oxides #20 nm !MUMPs". Such results are interpreted and explained by a reaction-layer fatigue mechanism. Specifically, moisture-assisted subcritical cracking within a cyclic stress-assisted thickened oxide layer occurs until the crack reaches a critical size to cause catastrophic failure of the entire device. The entirety of the evidence presented here strongly indicates that the reaction-layer fatigue mechanism is the governing mechanism for fatigue failure in micron-scale polycrystalline silicon thin films. © 2007 American Institute of Physics. $DOI: 10.1063/1.2403841%

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A reaction-layer mechanism for the delayed failure of micron-scale polycrystalline silicon structural films subjected to high-cycle fatigue loading

A study has been made to discern the mechanisms for the delayed failure of 2-μm thick structural films of n+-type, polycrystalline silicon under high-cycle fatigue loading conditions. Such polycrystalline silicon films are used in smallscale structural applications including microelectromechanical systems (MEMS) and are known to display ‘metal-like’ stress-life (S/N) fatigue behavior in room te...

متن کامل

High-cycle fatigue of micron-scale polycrystalline silicon films: fracture mechanics analyses of the role of the silica/silicon interface

It is known that micron-scale polycrystalline silicon thin films can fail in room air under high frequency (40kHz) cyclic loading at fully-reversed stress amplitudes as low as half the fracture strength, with fatigue lives in excess of 1011 cycles. This behavior has been attributed to the sequential oxidation of the silicon and environmentally-assisted crack growth solely within the SiO2 surfac...

متن کامل

High-cycle Fatigue in Micron-scale Structural Films of Polycrystalline Silicon: a Reaction-layer Failure Mechanism

A study has been made of high-cycle fatigue in 2-μm thick structural films of ntype, polycrystalline silicon for MEMS applications. Using an “on-chip” test structure resonating at ~40 kHz, such thin-film polysilicon is shown to display “metal-like” stress-life fatigue behavior in room air environments, with failures occurring after lives in excess of 10 cycles at stresses as low as half the fra...

متن کامل

Further considerations on the high-cycle fatigue of micron-scale polycrystalline silicon

Bulk silicon is not susceptible to high-cycle fatigue but micron-scale silicon films are. Using polysilicon resonators to determine stress-lifetime fatigue behavior in several environments, oxide layers are found to show up to four-fold thickening after cycling, which is not seen after monotonic loading or after cycling in vacuo.We believe that the mechanism of thin-film silicon fatigue is ‘‘re...

متن کامل

High-Cycle Fatigue of Polycrystalline Silicon Thin Films in Laboratory Air

When subjected to alternating stresses, most materials degrade, e.g., suffer premature failure, due to a phenomenon known as fatigue. It is generally accepted that in brittle materials, such as ceramics, cyclic fatigue can only take place where there is some degree of toughening, implying that premature fatigue failure would not be expected in polycrystalline silicon where such toughening is ab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007